1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
/// Wraps u32 that represents a packed RGBA color. Mostly used by types in the
/// low level custom drawing API, such as [`DrawListMut`](crate::DrawListMut).
///
/// The bits of a color are in "`0xAABBGGRR`" format (e.g. RGBA as little endian
/// bytes). For clarity: we don't support an equivalent to the
/// `IMGUI_USE_BGRA_PACKED_COLOR` define.
///
/// This used to be named `ImColor32`, but was renamed to avoid confusion with
/// the type with that name in the C++ API (which uses 32 bits per channel).
///
/// While it doesn't provide methods to access the fields, they can be accessed
/// via the `Deref`/`DerefMut` impls it provides targeting
/// [`imgui::color::ImColor32Fields`](crate::color::ImColor32Fields), which has
/// no other meaningful uses.
///
/// # Example
/// ```
/// let mut c = arcdps_imgui::ImColor32::from_rgba(0x80, 0xc0, 0x40, 0xff);
/// assert_eq!(c.to_bits(), 0xff_40_c0_80); // Note: 0xAA_BB_GG_RR
/// // Field access
/// assert_eq!(c.r, 0x80);
/// assert_eq!(c.g, 0xc0);
/// assert_eq!(c.b, 0x40);
/// assert_eq!(c.a, 0xff);
/// c.b = 0xbb;
/// assert_eq!(c.to_bits(), 0xff_bb_c0_80);
/// ```
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[repr(transparent)]
pub struct ImColor32(u32); // TBH maybe the wrapped field should be `pub`.
impl ImColor32 {
/// Convenience constant for solid black.
pub const BLACK: Self = Self(0xff_00_00_00);
/// Convenience constant for solid white.
pub const WHITE: Self = Self(0xff_ff_ff_ff);
/// Convenience constant for full transparency.
pub const TRANSPARENT: Self = Self(0);
/// Construct a color from 4 single-byte `u8` channel values, which should
/// be between 0 and 255.
#[inline]
pub const fn from_rgba(r: u8, g: u8, b: u8, a: u8) -> Self {
Self(
((a as u32) << Self::A_SHIFT)
| ((r as u32) << Self::R_SHIFT)
| ((g as u32) << Self::G_SHIFT)
| ((b as u32) << Self::B_SHIFT),
)
}
/// Construct a fully opaque color from 3 single-byte `u8` channel values.
/// Same as [`Self::from_rgba`] with a == 255
#[inline]
pub const fn from_rgb(r: u8, g: u8, b: u8) -> Self {
Self::from_rgba(r, g, b, 0xff)
}
/// Construct a fully opaque color from 4 `f32` channel values in the range
/// `0.0 ..= 1.0` (values outside this range are clamped to it, with NaN
/// mapped to 0.0).
///
/// Note: No alpha premultiplication is done, so your input should be have
/// premultiplied alpha if needed.
#[inline]
// not const fn because no float math in const eval yet đ©
pub fn from_rgba_f32s(r: f32, g: f32, b: f32, a: f32) -> Self {
Self::from_rgba(
f32_to_u8_sat(r),
f32_to_u8_sat(g),
f32_to_u8_sat(b),
f32_to_u8_sat(a),
)
}
/// Return the channels as an array of f32 in `[r, g, b, a]` order.
#[inline]
pub fn to_rgba_f32s(self) -> [f32; 4] {
let &ImColor32Fields { r, g, b, a } = &*self;
[
u8_to_f32_sat(r),
u8_to_f32_sat(g),
u8_to_f32_sat(b),
u8_to_f32_sat(a),
]
}
/// Return the channels as an array of u8 in `[r, g, b, a]` order.
#[inline]
pub fn to_rgba(self) -> [u8; 4] {
let &ImColor32Fields { r, g, b, a } = &*self;
[r, g, b, a]
}
/// Equivalent to [`Self::from_rgba_f32s`], but with an alpha of 1.0 (e.g.
/// opaque).
#[inline]
pub fn from_rgb_f32s(r: f32, g: f32, b: f32) -> Self {
Self::from_rgba(f32_to_u8_sat(r), f32_to_u8_sat(g), f32_to_u8_sat(b), 0xff)
}
/// Construct a color from the `u32` that makes up the bits in `0xAABBGGRR`
/// format.
///
/// Specifically, this takes the RGBA values as a little-endian u32 with 8
/// bits per channel.
///
/// Note that [`ImColor32::from_rgba`] may be a bit easier to use.
#[inline]
pub const fn from_bits(u: u32) -> Self {
Self(u)
}
/// Return the bits of the color as a u32. These are in "`0xAABBGGRR`" format, that
/// is, little-endian RGBA with 8 bits per channel.
#[inline]
pub const fn to_bits(self) -> u32 {
self.0
}
// These are public in C++ ImGui, should they be public here?
/// The number of bits to shift the byte of the red channel. Always 0.
const R_SHIFT: u32 = 0;
/// The number of bits to shift the byte of the green channel. Always 8.
const G_SHIFT: u32 = 8;
/// The number of bits to shift the byte of the blue channel. Always 16.
const B_SHIFT: u32 = 16;
/// The number of bits to shift the byte of the alpha channel. Always 24.
const A_SHIFT: u32 = 24;
}
impl Default for ImColor32 {
#[inline]
fn default() -> Self {
Self::TRANSPARENT
}
}
impl std::fmt::Debug for ImColor32 {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("ImColor32")
.field("r", &self.r)
.field("g", &self.g)
.field("b", &self.b)
.field("a", &self.a)
.finish()
}
}
/// A struct that exists to allow field access to [`ImColor32`]. It essentially
/// exists to be a `Deref`/`DerefMut` target and provide field access.
///
/// Note that while this is repr(C), be aware that on big-endian machines
/// (`cfg(target_endian = "big")`) the order of the fields is reversed, as this
/// is a view into a packed u32.
///
/// Generally should not be used, except as the target of the `Deref` impl of
/// [`ImColor32`].
#[derive(Copy, Clone, Debug)]
#[repr(C, align(4))]
// Should this be #[non_exhaustive] to discourage direct use?
#[rustfmt::skip]
pub struct ImColor32Fields {
#[cfg(target_endian = "little")] pub r: u8,
#[cfg(target_endian = "little")] pub g: u8,
#[cfg(target_endian = "little")] pub b: u8,
#[cfg(target_endian = "little")] pub a: u8,
// TODO(someday): i guess we should have BE tests, but for now I verified
// this locally.
#[cfg(target_endian = "big")] pub a: u8,
#[cfg(target_endian = "big")] pub b: u8,
#[cfg(target_endian = "big")] pub g: u8,
#[cfg(target_endian = "big")] pub r: u8,
}
// We assume that big and little are the only endiannesses, and that exactly one
// is set. That is, PDP endian is not in use, and the we aren't using a
// completely broken custom target json or something.
#[cfg(any(
all(target_endian = "little", target_endian = "big"),
all(not(target_endian = "little"), not(target_endian = "big")),
))]
compile_error!("`cfg(target_endian = \"little\")` must be `cfg(not(target_endian = \"big\")`");
// static assert sizes match
const _: [(); core::mem::size_of::<ImColor32>()] = [(); core::mem::size_of::<ImColor32Fields>()];
const _: [(); core::mem::align_of::<ImColor32>()] = [(); core::mem::align_of::<ImColor32Fields>()];
impl core::ops::Deref for ImColor32 {
type Target = ImColor32Fields;
#[inline]
fn deref(&self) -> &ImColor32Fields {
// Safety: we statically assert the size and align match, and neither
// type has any special invariants.
unsafe { &*(self as *const Self as *const ImColor32Fields) }
}
}
impl core::ops::DerefMut for ImColor32 {
#[inline]
fn deref_mut(&mut self) -> &mut ImColor32Fields {
// Safety: we statically assert the size and align match, and neither
// type has any special invariants.
unsafe { &mut *(self as *mut Self as *mut ImColor32Fields) }
}
}
impl From<ImColor32> for u32 {
#[inline]
fn from(color: ImColor32) -> Self {
color.0
}
}
impl From<u32> for ImColor32 {
#[inline]
fn from(color: u32) -> Self {
ImColor32(color)
}
}
impl From<[f32; 4]> for ImColor32 {
#[inline]
fn from(v: [f32; 4]) -> Self {
Self::from_rgba_f32s(v[0], v[1], v[2], v[3])
}
}
impl From<(f32, f32, f32, f32)> for ImColor32 {
#[inline]
fn from(v: (f32, f32, f32, f32)) -> Self {
Self::from_rgba_f32s(v.0, v.1, v.2, v.3)
}
}
impl From<[f32; 3]> for ImColor32 {
#[inline]
fn from(v: [f32; 3]) -> Self {
Self::from_rgb_f32s(v[0], v[1], v[2])
}
}
impl From<(f32, f32, f32)> for ImColor32 {
fn from(v: (f32, f32, f32)) -> Self {
Self::from_rgb_f32s(v.0, v.1, v.2)
}
}
impl From<ImColor32> for [f32; 4] {
#[inline]
fn from(v: ImColor32) -> Self {
v.to_rgba_f32s()
}
}
impl From<ImColor32> for (f32, f32, f32, f32) {
#[inline]
fn from(color: ImColor32) -> Self {
let [r, g, b, a]: [f32; 4] = color.into();
(r, g, b, a)
}
}
// These utilities might be worth making `pub` as free functions in
// `crate::color` so user code can ensure their numeric handling is
// consistent...
/// Clamp `v` to between 0.0 and 1.0, always returning a value between those.
///
/// Never returns NaN, or -0.0 â instead returns +0.0 for these (We differ from
/// C++ Dear ImGUI here which probably is just ignoring values like these).
#[inline]
pub(crate) fn saturate(v: f32) -> f32 {
// Note: written strangely so that special values (NaN/-0.0) are handled
// automatically with no extra checks.
if v > 0.0 {
if v <= 1.0 {
v
} else {
1.0
}
} else {
0.0
}
}
/// Quantize a value in `0.0..=1.0` to `0..=u8::MAX`. Input outside 0.0..=1.0 is
/// clamped. Uses a bias of 0.5, because we assume centered quantization is used
/// (and because C++ imgui does it too). See:
/// - https://github.com/ocornut/imgui/blob/e28b51786eae60f32c18214658c15952639085a2/imgui_internal.h#L218
/// - https://cbloomrants.blogspot.com/2020/09/topics-in-quantization-for-games.html
/// (see `quantize_centered`)
#[inline]
pub(crate) fn f32_to_u8_sat(f: f32) -> u8 {
let f = saturate(f) * 255.0 + 0.5;
// Safety: `saturate`'s result is between 0.0 and 1.0 (never NaN even for
// NaN input), and so for all inputs, `saturate(f) * 255.0 + 0.5` is inside
// `0.5 ..= 255.5`.
//
// This is verified for all f32 in `test_f32_to_u8_sat_exhaustive`.
//
// Also note that LLVM doesn't bother trying to figure this out so the
// unchecked does actually help. (That said, this likely doesn't matter
// for imgui-rs, but I had this code in another project and it felt
// silly to needlessly pessimize it).
unsafe { f.to_int_unchecked() }
}
/// Opposite of `f32_to_u8_sat`. Since we assume centered quantization, this is
/// equivalent to dividing by 255 (or, multiplying by 1.0/255.0)
#[inline]
pub(crate) fn u8_to_f32_sat(u: u8) -> f32 {
(u as f32) * (1.0 / 255.0)
}
#[test]
fn check_sat() {
assert_eq!(saturate(1.0), 1.0);
assert_eq!(saturate(0.5), 0.5);
assert_eq!(saturate(0.0), 0.0);
assert_eq!(saturate(-1.0), 0.0);
// next float from 1.0
assert_eq!(saturate(1.0 + f32::EPSILON), 1.0);
// prev float from 0.0 (Well, from -0.0)
assert_eq!(saturate(-f32::MIN_POSITIVE), 0.0);
// some NaNs.
assert_eq!(saturate(f32::NAN), 0.0);
assert_eq!(saturate(-f32::NAN), 0.0);
// neg zero comes through as +0
assert_eq!(saturate(-0.0).to_bits(), 0.0f32.to_bits());
}
// Check that the unsafe in `f32_to_u8_sat` is fine for all f32 (and that the
// comments I wrote about `saturate` are actually true). This is way too slow in
// debug mode, but finishes in ~15s on my machine for release (just this test).
// This is tested in CI, but will only run if invoked manually with something
// like: `cargo test -p imgui --release -- --ignored`.
#[test]
#[ignore]
fn test_f32_to_u8_sat_exhaustive() {
for f in (0..=u32::MAX).map(f32::from_bits) {
let v = saturate(f);
assert!(
(0.0..=1.0).contains(&v) && (v.to_bits() != (-0.0f32).to_bits()),
"sat({} [e.g. {:#x}]) => {} [e.g {:#x}]",
f,
f.to_bits(),
v,
v.to_bits(),
);
let sat = v * 255.0 + 0.5;
// Note: This checks what's required by is the safety predicate for
// `f32::to_int_unchecked`:
// https://doc.rust-lang.org/std/primitive.f32.html#method.to_int_unchecked
assert!(
sat.trunc() >= 0.0 && sat.trunc() <= (u8::MAX as f32) && sat.is_finite(),
"f32_to_u8_sat({} [e.g. {:#x}]) would be UB!",
f,
f.to_bits(),
);
}
}
#[test]
fn test_saturate_all_u8s() {
for u in 0..=u8::MAX {
let v = f32_to_u8_sat(u8_to_f32_sat(u));
assert_eq!(u, v);
}
}